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ABSTRACT: It is now commonly acknowledged that intelligent robots will not be able to interact with humans 
unless they can see as well as we do. Until very recently emulating human visual abilities was considered an insoluble 
problem. The two main functions of human vision that allow us to operate in everyday life are Figure-Ground 
Organization and 3D shape recovery. We present the very first computational models of these two functions, compare 
the performance of the models to the performance of human subjects and implement these models in a robot. 
 
 

1. Introduction 
 
The modern scientific study of human visual perception 
started with the work of Gestalt Psychologists who 
completely changed the way perceptual psychologists 
viewed the underlying mechanisms (Wertheimer, 
1923/1958; Koffka, 1935). Gestalt Psychologists 
pointed out that the percept of the visual world is 
always a combination of the information provided by 
the retinal image(s) and an a priori simplicity principle. 
By doing this they elaborated the ideas that had been 
put forth by Ernst Mach (1906/1959). Gestaltists 
emphasized the importance of perceptual constancies in 
vision. Consider shape constancy, as their primary 
example. Shape constancy refers to the fact that the 
percept of the shape of a given 3D object is constant 
despite changes in the shape of the object’s 2D retinal 
image, caused by changes in the 3D viewing direction. 
Perceptual constancies lead to a veridical perception of 
the world’s permanent characteristics. By veridical it is 
meant that we see things the way they are out there. 
This paper addresses two fundamental aspects of 
veridical perception: Figure-Ground Organization and 
shape constancy. 
 

2. Human Vision as an Inverse Problem 
 
Figure-Ground Organization (FGO) refers to the task of 
identifying how many objects there are in front of an 
observer and where they are. Figure 1(a) shows an 
example. It is easy to see 5 pieces of furniture in the 
center of the floor. The 6th object is substantially 
occluded, but with some effort it can also be seen on 
the back right. The fact that FGO is typically solved by 
the human visual system so effortlessly is deceptive. 

From a computational point of view FGO is extremely 
difficult. The main reason is that FGO is, as most 
important visual functions, and ill-posed “inverse 
problem.” The classification of problems into direct or 
forward vs. inverse is due to Tikhonov (Tikhonov & 
Arsenin, 1977; see also Poggio et al., 1985, for the 
introduction of this classification into vision science). 
A forward problem in vision refers to producing a 2D 
retinal image of a 3D scene. This forward problem is 
easy (well-posed) because for a given 3D scene and a 
given viewpoint the 2D image is uniquely specified. In 
fact, in real imaging systems such as a robot camera or 
a human eye, it is the laws of optics that “solve” the 
forward problem (produce the image).  
 

       
(a)                                         (b) 

Figure 1. A pair of stereo images for an indoor scene 
with six pieces of furniture. The 6th object is in the back 
right of the scene. It is substantially occluded by the 
chair in front of it. 
 
An inverse problem in vision refers to inferring the 3D 
scene from a 2D retinal image. This problem is difficult 
(ill-posed) because there are always infinitely many 
possible 3D interpretations (solutions) for a given 2D 
retinal image. One way to see this is to realize that the 
object points can be moved on their projecting lines 
arbitrarily without changing the 2D image. The fact that 
the human visual system almost always arrives at a 
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single and correct 3D interpretation is truly amazing. 
The early enthusiasm of the machine vision community 
in the 1950s and 1960s to solve the vision problems 
and emulate or even surpass the abilities of the human 
visual system ended with a complete failure (but see 
successful examples of 3D interpretation of line 
drawings, such as the work of Guzman, 1968; Clowes, 
1971, Huffman, 1971, Waltz, 1972, and Marr, 1977). 
As a result, the computer vision community abandoned 
the real 3D problem about 30 years ago and switched to 
the task of extracting 2D statistical features from 2D 
images. The 3D problem has been considered insoluble 
despite (i) the effort of hundreds, if not thousands of 
computer vision laboratories around the world, (ii) 
increasingly better computational and mathematical 
methods for signal processing and machine learning, 
and (iii) increasingly faster computers with growing 
computational power. Interestingly, many psychologists 
studying human vision followed the lead of the 
computer vision community and concluded that the 3D 
problem cannot be solved either by a scientist or by the 
human visual system. This resulted in a popularity of 
“multiple view theories” of 3D shape and scene 
perception, in which it is assumed that our percept of a 
3D world consists of 2D representations. This is like 
claiming that the Earth is flat.  
 
Let us explain in some detail the nature and the degree 
of the difficulty of FGO. Consider a camera image with 
6 million pixels. Such cameras do exist and they 
provide a reasonable analogy with the human retina 
which contains 6 million cones. Solving FGO may 
require evaluating all possible partitions of the 6 
million pixels and deciding which partitions most likely 
represent objects. Ignore for a while how a criterion for 
making this decision can be constructed. Even if a very 
good criterion were available, evaluating all possible 
partitions of a single 2D image cannot be practically 
done in any reasonable amount of time even if the 
fastest computers were used. The reason is that the 
number of all partitions of n elements (called the Bell 
number) grows with n faster than n!, and n! grows very 
fast. Any problem that requires performing a number of 
computations proportional to n! is considered 
intractable. Even for small n, n! is very large. For 
example, 61! is equal to 1081, which is equal to the 
number of atoms in the universe. 6,000,000! is equal to 
1038,000,000. It should be obvious that the number of all 
partitions of 6 million pixels cannot be analyzed. Brute 
force approach, based on machine learning methods 
will not do. It is important to realize that the human 
visual system solves FGO within a fraction of a second 
despite the fact that neurons are fairly slow. If a neuron 
in the human brain is compared to a transistor in a CPU 
of a computer, then the neurons are 6-9 orders of 
magnitude slower than the transistors (i.e., 1 million to 
1 billion times slower). So, the algorithm used by our 

visual system to solve FGO must be very smart and if 
anyone is able to emulate it in a seeing robot, this will 
be a real breakthrough. Section 3 describes this 
algorithm and the performance of a robot using it. 
 
Next, consider the second insoluble vision problem, 3D 
shape recovery. Figure 2 shows a 2D image of a 3D 
abstract and unfamiliar polyhedron. The reader can 
surely see the 3D polyhedron, but again the fact that 3D 
shape perception seems so effortless is deceptive.  

 
Figure 2. An image of a 3D polyhedron. 
 
Assume that a 3D shape is represented by N points in 
the 3D space. These points could be points on visible 
surfaces of the 3D object. If the object subtends the 
central 20 deg of the visual field, as many as half of the 
6 million cones are stimulated because most of the 
cones are in the central part of the human retina. So, N 
could be as large as 3 million. Now, as already Bishop 
Berkeley (1709) pointed out, each retinal point could 
be an image of any of the infinitely many points in the 
3D space “out there”, all the points being located on the 
line emanating from the retinal point and going through 
the center of perspective projection in the eye. Assume 
that the visual system tries to reconstruct the 3D points 
with spatial resolution of 1mm. Furthermore, assume 
that the object in front of the observer has the range in 
depth of 1m. This means that instead of considering 
infinitely many points on each projecting line, we only 
need to consider 1000 points. It follows that for a given 
2D retinal image represented by 3 million points, the 
number of all possible 3D interpretations is 10003,000,000 
which is equal to 109,000,000. Another astronomically 
large number. We know that the human visual system 
solves this insoluble problem in a fraction of a second 
despite the fact that the neurons in the brain are quite 
slow. How this is done will be described in Section 4. 
The last section will provide evaluation of what it 
means to have a machine that sees like us and what, if 
anything is missing in our effort of emulating human 
vision. 
 

3. Algorithm for Solving Figure-Ground 
Organization Problem 
 
As with every ill-posed inverse problem, a successful 
solution critically depends on the ability to impose 
effective a priori constraints on the family of possible 
interpretations. This is also true with FGO. There must 
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be a way to restrict the number of all partitions of 
6,000,000 cones to just one. What are those 
constraints? First, an object always comes in one piece, 
rather than in many spatially discontinued pieces. 
Second, objects are typically closer to the observer, 
than the background. Assume that each object subtends 
a solid angle of 10 by 10 deg (this area is about the size 
of one’s hand at the arm’s viewing distance). If there 
was no occlusion, we could stack about 200 such 
objects in front of the observer (assuming that the 
visual field is equivalent to a surface of a hemisphere, 
whose solid angle is 20,626 deg2). So, if an observer is 
trying to find objects in front of him, he will need to 
examine only 200 spatial neighborhoods on the retina, 
rather than 1038,000,000 possible partitions. Furthermore, 
these 200 spatially separate neighborhoods can be 
analyzed simultaneously in the human visual system 
due to the massively parallel architecture of the visual 
system. Clearly, a priori constraints can be quite 
effective. The constraints of spatial contiguity and large 
size dramatically reduced computational complexity of 
the problem. Next, we will describe which constraints 
are needed to actually find objects in the 3D scene and 
in the 2D image. 
 
Consider the case of a binocular observer, or a 
monocular active observer. We simulate this case using 
a Pekee II robot equipped with a BumbleBee stereo 
camera. The robot’s height is about 1m and the two 
lenses of the stereo camera are separated by 12 cm, 
which is roughly twice as large as the separation 
between the human eyes. The robot does not use any 
other sensors. In particular, the robot does not use the 
laser range sensor for reconstructing depth map. The 
robot looks at an indoor scene containing children 
furniture like that in Figure 1. Its task is to determine 
the number, positions and sizes of objects. Note that the 
floor is highly textured and it contains shadows and 
specular reflections. All this makes it very difficult to 
detect objects in the 2D images using conventional 
methods of texture and contour analysis. Building on 
Julesz’s (1971) powerful demonstrations, in which a 
human observer was able to solve the binocular 
correspondence problem with random dot stereograms, 
our robot begins with establishing binocular 
correspondence of texture points, using the Sum of 
Absolute Difference Correlation algorithm (SADC) 
(Wong, Vassiliadis, & Cotofana, 2002). This stage is 
not error free, of course and it cannot be the basis of 
reliable 3D scene reconstruction. But the robot’s goal is 
to solve FGO, not to reconstruct the 3D scene. Because 
objects are always spatially contiguous and important 
objects tend to be large (see the previous paragraph), 
the objects can be detected in the scene because there 
are always large number of depth samples close to each 
other in the 3D space. Using the distance between its 
cameras, the robot computes a 3D depth map (scales 

the binocular disparities) of visible points. The next 
step is to improve the signal to noise ratio by using 
another set of a priori constraints. 
 
The next set of constraints is the a priori knowledge 
that all objects rest on a common horizontal ground 
due to gravity. The ground is at a known distance 
below the cameras (this distance is called the height of 
the observer). Using these two constraints, it is natural 
to estimate, as the next step, the floor in the 3D depth 
map and eliminate it from further processing (Faugeras, 
1993, p.209). This is quite easy because in a typical 
scene many 3D points are actually floor points. 
Furthermore, if the robot, like a human observer, knows 
the orientation of its cameras relative to the gravity, 
the estimation of the floor calls for nothing more than 
fitting a known plane to 3D points and determining 
which points are close to the floor or below the floor 
(3D points below the floor represent noise). All these 
points are removed from the depth map because the 
floor points represent background and we are interested 
in detecting objects, called “figures”. It is important to 
point out that a richly textured floor is not a problem 
for our robot. In fact, the texture is actually helpful for 
establishing the binocular correspondence. In contrast, 
conventional algorithms cannot work with richly 
textured backgrounds because this makes the separation 
of figure from ground impossible. 
 
After floor points are removed from the 3D depth map, 
only object points remain. Now, the robot “mentally” 
rotates the remaining 3D depth map to simulate 
viewing the scene from above. There are two good 
reasons to perform this rotation. First, all natural 
objects have prominent vertical structures such as legs, 
surfaces and edges. This is true about animal and 
human bodies, as well as architectural constructions 
and furniture. In the presence of vertical gravitational 
force, vertical legs and surfaces are mechanically more 
stable. Because there are many vertical structures in the 
natural environment, there are many texture points 
representing these structures that lead to our 3D depth 
map. When these 3D points are projected 
orthographically onto a horizontal surface, such as 
floor, there is a very strong signal indicating the 
presence of the objects.  
 
The second reason to perform “mental rotation” to 
simulate looking at the scene from above is related to 
the fact that most objects reside on a common 
horizontal ground plane. Exceptions are lamps hanging 
from the ceiling or a book lying on a desk. This means 
that if the 3D scene is actually viewed from above there 
will not be many partial occlusions of some objects by 
others. Partial occlusions are a rule rather than 
exception in ordinary visual images like that in Figure 
1. Occlusions are common because some objects are 
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farther away than others from the observer. If a camera 
were mounted on the ceiling, there will not be many 
occlusions. Instead of mounting a physical camera on 
the ceiling (which is not practical), the robot “mentally” 
rotates the visible 3D points to simulate looking from 
above.  
 
The result of the orthographic projection of the 3D 
points in our depth map on the horizontal plane is 
shown in Figure 3. When the viewing distance is large, 
the depth error from binocular disparity becomes large, 
too. Therefore, in this example, the algorithm only 
detects the objects that are within 4 meters in front of 
its cameras.  
 

 
Figure 3. Orthographic projection of 3D points 
representing objects in Figure 1 on the horizontal plane.  
 
Now is the time to identify individual objects in the 3D 
scene because these objects correspond to clusters of 
points. Any of the standard clustering methods can be 
used, but additional a priori constraints can greatly 
improve the result. For example, we expect rectangular 
objects whose size is within some range. We assume 
that the strong signal in the orthographic projection is 
caused by the vertical structures of the object. As a 
result, the projection of the 3D points onto the floor 
represents the shapes of the orthographic projection of 
the individual objects. So, we fit rectangles to the 
projection and estimate the position, size and 
orientation of each rectangle. The result of such fitting 
is shown in Figure 4. The green boxes show the fitted 
rectangles and the red boxes show the ground truth.  

 
Figure 4. The green rectangles were fitted to the points 
in Figure 3. The red boxes show the ground truth.  
 
In the case of the severely occluded object (the 
rightmost stand in the second row), our algorithm 
detects it and computes its position successfully, 

although it fails to compute its orientation accurately. 
This failure results from small amount information 
about this object. At this stage we can claim that our 
robot solved FGO in the 3D representation, on the 
floor. This solution can be used for planning visual 
navigation in the scene.  
 
We want to emphasize one new and very important 
aspect of the 3D FGO. As you can see from Figure 4, 
the robot produces a spatially global map of its 
environment (the floor plan) from a single viewing 
position. Specifically, the robot recovers the invisible 
spaces behind the objects. As a result, the robot knows 
how much space is between objects regardless whether 
this space is directly visible or not. This is essential 
because it allows the robot to plan its navigation path in 
the scene even before it starts to move. This contrasts 
with conventional SLAM (Simultaneous Localization 
And Mapping) methods where the robot has to explore 
the environment and to reconstruct the visible surfaces 
from different places in advance to build the map and, 
at the same time to localize itself (Durrant-Whyte, 
Bailey, 2006). In dynamic environments, building 
spatially global map must be “instantaneous”. 
Otherwise, by the time the map is produced, the 
environment would have changed. But solving 3D FGO 
is not the end of processing. More can be accomplished 
with these results.  
 

 
Figure 5. Detected objects in the image are 
circumscribed by color polygons. 
 
The robot has an estimate of each object’s height, 
which means that a 3D circumscribing box can be 
formed for each object. We then project the occluding 
boundaries of these boxes to one of the 2D perspective 
images that were used to solve the 3D FGO. The result 
is shown in Figure 5. The color curves in the image are 
estimated convex hulls of 2D projections of original 
objects. Some of these curves partially overlap as they 
should because the objects themselves partially 
overlap. These color curves represent the solution of 
FGO in the 2D image.  
 
Figure 6 is the diagram of the algorithm and it shows 
how to identify individual objects from a pair of stereo 
images. The algorithm was tested on a DELL T5500 
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computer, and on average, it can acquire and process 
about 4 pictures (with the resolution of 512x384 pixels) 
per second. 
 
Once we know which regions in the 2D image represent 
individual objects, we can proceed with extracting 
important 2D contours that represent essential aspects 
of the 3D shape. How a 3D shape can be recovered 
from a single 2D perspective image will be described 
next. 

 
Figure 6: The diagram of the algorithm.  
  

4. Algorithm for recovering a 3D shape 
from a single 2D image 
 
Unlike all prior algorithms and models for 3D shape 
reconstruction, we begin by asking about the nature of 
a priori constraints, rather than about the nature of 
visual data. Constraints proved so useful in solving 
FGO that the reader should be confident that they will 
be essential in 3D shape recovery, as well. 
Computational complexity of 3D shape reconstruction 
is so large (see Section 2) that without a priori 
constraints it just does not seem possible to reconstruct 
3D shapes and scenes accurately and reliably. This 
observation has been supported by enormous amount of 
results, both theoretical and empirical. In human vision, 
researchers have been testing for dozens of years the 
observer’s ability to judge depth relations among points 
and surfaces, as well as the ability to judge 3D 
orientation of surfaces. Most of these experiments were 
done with amorphous stimuli that precluded the visual 

system from using a priori constraints. This was done 
on purpose; the researchers wanted to study 3D 
perception not “contaminated” with a priori 
constraints. These experiments universally showed that 
perception of depth and surface orientations is very 
poor: there are large systematic errors across viewing 
conditions, across observers and even across 
replications of the same experiment with the same 
observer. These results should have provided a warning 
sign that visual data without a priori constraints is not 
the way to go. But the researchers wanted to study the 
most general type of stimulus devoid of familiarities or 
constraints of any kind. But shapes of natural objects 
are not devoid of regularities; shapes of all animals are 
mirror symmetrical. Their parts, as pointed out by 
Biederman (1987), conform to translational symmetry 
(Biederman called the family of shapes that are used to 
represent parts, “geons”). Finally, flowers often 
represent rotational symmetry. Once we acknowledge 
that most, if not all important natural object are 
symmetrical, then the symmetry a priori constraint is 
no longer a “contamination” of one’s experiment, but it 
becomes its essential part. Using Brunswik’s (1956) 
terminology, a stimulus in one’s laboratory experiment 
must be “ecologically valid.” How far can one go with 
a symmetry constraint? The answer is, all the way. The 
symmetry constraint can often reduce the enormous 
family of possible 3D interpretations to a unique and 
the correct one.   
 
Similar efforts with similar outcomes took place in the 
machine vision community. The researchers became 
aware of such a priori constraints as symmetry at least 
as early as 1981(Kanade, 1981; Gordon, 1989) , but the 
use of strong a priori constraints has not become the 
main stream of research. Marr’s (1982) paradigm, with 
its emphasis on surfaces, dominated the field. When 
this paradigm failed, instead of exploring the role and 
availability of constraints, machine vision community 
switched to 2D operations on 2D images. The hope was 
that modern machine learning methods will be able to 
extract invariant signatures of 3D objects. Despite some 
moderate progress, recognition performance of these 
2D “appearance models” did not come even close to 
the performance of human observers. During the last 
decade, the present authors have provided 
psychophysical evidence showing that a priori 
constraints such as 3D symmetry and planarity of 
contours are essential in 3D shape perception (Pizlo, 
2008; Pizlo et al., 2010). If these constraints cannot be 
applied to the family of possible 3D interpretations of a 
2D image, shape constancy performance is at chance 
level. When these constraints can be applied, 
performance is close to perfect. So, now we do not 
have to deal with a question as to whether or not 
constraints should be used. They should and they are 
used. The real question is how to design a 3D shape 
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recovery model whose performance will match that of a 
human observer. 
 
Consider a set of N points in a 3D space forming a 
mirror symmetric configuration. This means that there 
is a plane in 3D such that N/2 of the 3D points are 
mirror images of the other N/2 points with respect to 
this plane. Recall that in the absence of a symmetry 
constraint, when the task is to reconstruct the depth of 
N points from a single 2D perspective image, there are 
N free (unknown) parameters, the depth values of all N 
points. When these N points form a 3D mirror 
symmetrical configuration, there is no unknown! The 
3D configuration is uniquely recovered! Recall the 
degree of uncertainty that we estimated in Section 2 for 
the case of 3D shape recovery. It should now be 
obvious that when a designer of a robot vision system is 
faced with a decision of adding additional visual data 
vs. an effective a priori constraint, she should choose 
the latter. This is what we did. 
 
We showed not only how to apply a symmetry 
constraint to a 2D perspective image, but also to a 2D 
orthographic image (Li et al., 2009; see also Vetter & 
Poggio, 1994). Next, we showed how the human visual 
system combines the 3D symmetry constraint with two 
2D retinal images (Li et al., 2011). This is the case of a 
binocular observer or an active monocular observer. 
Besides 3D symmetry and planarity of contours 
constraints, we showed that the human visual system 
uses 3D compactness constraint (Li et al., 2009). 3D 
compactness is a well known concept in mathematical 
physics (Polya & Szego, 1951), but it has never been 
used as a constraint in visual perception. A 3D 
compactness is defined as V2/S3, where V and S are the 
volume and the surface are of an object or of its convex 
hull.  
 
Figure 7 shows three views of a 3D shape recovered by 
our model based on the 2D image shown in Figure 2. 
We want to point out two important aspects of our 
shape recovery model: (i) it recovers 3D shape without 
measuring 3D distances; 3D distances can be 
reconstructed after the 3D shape is recovered, and (ii) it 
often recovers the back invisible parts of the object as 
well as its front visible ones. This contrasts with Marr’s 
(1982) 2.5D sketch. According to Marr, the visual 
system can inform the observer only about the visible 
surfaces of the 3D object. The back, invisible ones are 
completed by memory. Our robot can “see” the entire 
object. This is critical because it gives the robot 
knowledge of where the object ends on its back, 
“invisible” side. Note that so far, the symmetry 
correspondences for the image of a 3D shape have been 
established manually. Once the symmetric points are 
identified in the 2D image, the recovery is 
instantaneous.   

 
          (a)                          (b)                       (c) 
Figure 7. Three views of the recovered polyhedron 
from the 2D image in Figure 2.1 
 
To compare the recovery of our model with human 
performance, we measured the subjects’ percept of the 
symmetric polyhedra, like that in Figure 2, in binocular 
and monocular viewing conditions. In the case of 
binocular condition, the subject viewed the stereo 
images of polyhedra through stereoscopic shutter 
glasses. On each trial, two objects were shown. The 
reference 3D shape was a stationary object shown on 
the left (monocularly or binocularly). The test 3D shape 
was shown on the right monocularly. The test shape 
was rotating around the vertical axis so that the subject 
could see many views of this shape. The slant of the 
symmetry plane of the reference 3D shape was 15, 30, 
45, 60 or 75 degrees. The subject was asked to adjust 
the aspect ratio of the test 3D shape so that it matched 
the reference 3D shape. The rationale behind this 
adjustment task is related to the fact that a single 2D 
orthographic image of a symmetric 3D shape, 
determines this shape up to only one free parameter – 
its aspect ratio (Vetter & Poggio, 1994). Four subjects 
were tested and each ran 100 trials for each viewing 
condition (20 trials per each of the five slants). 
  
Figure 8 shows the comparison of monocular and 
binocular performance of a human subject in 3D shape 
recovery to the performance of our model. The bottom 
line is that the model’s performance is very close to the 
subject’s performance. Specifically, in monocular 
viewing, there are systematic errors in recovering the 
aspect ratio of the 3D shape when the slant of the 
symmetry plane is close to 0 or 90 deg. Slants 0 and 90 
deg represent “degenerate views”. They are called 
degenerate because with such views the 3D symmetry 
constraint is ineffective. Note that the systematic errors 
of the model are very similar to the systematic errors of 
the subject. In binocular viewing, all systematic errors 
disappear. Both, the subject and the model see the 3D 
shapes veridically. This is the first empirical and 
computational demonstration of perfect 3D shape 
perception. 

                                                           
1 Our polyhedral stimuli consisted of two boxes whose 
bottom faces were coplanar. So, each polyhedron had 
28 edges and all of the edges were included in the 
object’s representation, despite the fact that some of 
them were coplanar, like those seen in Figure 7c. 
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 Psychophysics  Simulation model 

 
Figure 8. Performance of one subject (YS) is shown on 
the left. Performance of our model simulating YS’s 
performance is shown on the right (from Li et al., 
2011). The subject and the model performed a 3D 
shape recovery task based on the information provided 
by one or two images (monocular vs. binocular 
viewing). The horizontal axis shows the slant of the 
symmetry plane of the 3D reference shape. The vertical 
axis shows the error in the recovered aspect ratio of the 
test 3D shape using a log scale. 
 

5. Conclusions 
 
We explained two fundamental functions of the visual 
system: Figure-Ground Organization and 3D shape 
recovery. These two functions have been universally 
considered insoluble problems because of their inherent 
ill-posedness: there are simply too many possible 
solutions. We showed that these problems can be 
solved and a unique and correct interpretation produced 
when effective a priori constraints are used. We 
“explained” these functions in the sense that we 
formulated computational models and implemented 
them in a seeing robot. By doing this, we followed 
Richard Feynman’s proposal “what I cannot create, I 
don’t understand”.  
 
Is there any other problem to solve before the robots 
can interact with us? There is only one such problem. 
To apply the symmetry a priori constraint, the robot 
must be able to detect where, in the 3D object, the 
symmetry transformation is present. This is not trivial 
because the 2D image of a 3D symmetrical object is, 
itself asymmetrical. To detect a 3D symmetry from 
perspective images, one has to use perspective 
invariants of symmetry and formulate a robust method 
of using them with real images of real scenes. We have 
already made good progress in solving this problem. 
For more examples illustrating how our algorithm 
solves FGO problem, as well as demos of 3D scene and 
shape recovery of synthetic and real objects, as well as 
robot navigation, please refer to the following links 
http://web.ics.purdue.edu/~li135/Demo.html and 
http://web.ics.purdue.edu/~li135/Demo/People/objdet.
mov. 
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