
 

 

 
Abstract 

 
We present a new computational model for verifying 

whether a 3D shape is mirror-symmetric based on its single 
2D image. First, a psychophysical experiment which tested 
human performance in detection of 3D symmetry is 
described. These psychophysical results led to the 
formulation of a new algorithm for symmetry detection. The 
algorithm first recovers the 3D shape using a priori 
constraints (symmetry, planarity of contours and 3D 
compactness) and then evaluates the degree of symmetry of 
the 3D shape. Reliable discrimination by the algorithm 
between symmetric and asymmetric 3D shapes involves two 
measures: similarity of the two halves of a 3D shape and 
compactness of the 3D shape. Performance of this 
algorithm is highly correlated with that of the subjects. We 
conclude that this algorithm is a plausible model of the 
mechanisms used by the human visual system. 

1. Introduction 
Many, if not most objects in the real world are symmetric 

or at least approximately symmetric. More specifically, 
most symmetric objects are mirror, rather than rotational or 
translational symmetric. Hence, detecting mirror symmetry 
is important. In this paper, we will use “symmetry” to mean 
“mirror-symmetry”. Our everyday life experience suggests 
that human observers have little difficulty identifying 
which 3D objects are symmetric. 

Figure 1 illustrates this fact. It is probably clear to the 
reader that the 3D shape in (a), but not in (b), (c), or (d) is 
mirror symmetric. Note that all 2D images in Figure 1 are 
asymmetric. It follows that the perceptual decision about 
the 3D symmetry of a shape cannot be based on evaluating 
symmetry of the 2D image. Instead, it requires recovering 
and evaluating the 3D shape itself. The recovery of a 3D 
shape from a single 2D image is an ill-posed inverse 
problem. Specifically, the family of possible 3D 
interpretations produced from a single 2D image is 
infinitely large. In order to recover a unique and correct 3D 
shape, the visual system has to impose a priori constraints 
on this family. In this paper, we examine how human 
observers detect 3D symmetry from a single 2D 
orthographic image. Based on results of this experiment we 

formulated a new computational model of this ability. The 
model recovers a unique 3D shape by using the following 
constraints: symmetry of the 3D shape, planarity of its 
contours and 3D compactness. After the 3D shape is 
recovered, its asymmetry is evaluated by comparing the 
similarity of the two (symmetric) halves of the shape, as 
well as by measuring 3D compactness of the shape.  

This paper is organized as follows. First, several 
observations about the relation between a 3D symmetric 
shape and its single 2D image are briefly described. Next, 
an overview of research on symmetry perception in human 
and computer vision is presented. Then, a psychophysical 
experiment on human 3D symmetry discrimination is 
described. Based on the psychophysical results, a new 
computational model for detecting symmetry is presented 
and the performance of the model is compared to the 
performance of human subjects. In the Appendix, a new 
computational model for recovering a 3D shape from a 
single 2D image is described. This model uses symmetry as 
one of the constraint, but it can recover asymmetric shapes, 
as well. 

1.1. Properties of a 2D image of a 3D symmetric 
shape 

Consider a 3D symmetric shape. The line segments, 
which connect pairs of symmetric points, are parallel to one 
another. These segments are called symmetry line 
segments. They all are perpendicular to the symmetry plane 
and their midpoints are on this plane. 

Consider now an orthographic projection of a 3D 
symmetric shape on the 2D image. Parallelism of lines and 
midpoints of line segments are invariant under 
orthographic projection. It follows that images of symmetry 
line segments are parallel to one another. However, the 
midpoints of the projected symmetry lines segments are not 
collinear, unless these segments are coplanar in 3D space. 
Interestingly, if projected symmetry line segments are 
parallel to one another in the 2D orthographic image, then 
this image is consistent with a 3D mirror symmetric 
interpretation. This statement follows from the method of 
construction of a one-parameter family of 3D symmetric 
shapes (see Appendix). Thus, the images in Figures 1 c and 
d are consistent with 3D symmetric interpretations even 
though they are not perceived as such. This paper tries to 
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uncover the mechanisms that are used by the human visual 
system to discriminate between symmetric and asymmetric 
shapes. 

3D mirror symmetry is a powerful constraint that can be 
used in recovering the 3D shape from its 2D image. The 
best way to understand the nature of this constraint is to 
consider the concept of a virtual image. A virtual image is 
computed from the given (real) 2D image. The virtual 
image is an image of the same 3D shape when viewed from 
a different viewing direction [17]. As a result, the problem 
of recovering a 3D symmetric shape from one 2D image is 
transformed to an easier (more constrained) problem of 
recovering a 3D shape from two 2D images. Two 
orthographic images, however, are still not sufficient for a 
unique recovery. This means that additional constraints 
have to be used (see below). 

1.2. Symmetry in human vision 
It is known that symmetry of a 3D shape plays an 

important role in human vision. Kontsevich [5] suggested 
that perceived 3D shape produced by a single 2D image is 
biased toward a 3D symmetric interpretation. He illustrated 
this suggestion by showing that a line drawing of a 
polyhedral object tends to be perceived as symmetric when 
the image is consistent with such an interpretation. He also 
showed that a nearly symmetric object tends to be 
perceived as symmetric even if the 2D image is not 
consistent with a perfectly symmetric 3D interpretation. 
Pizlo et al. [10] showed that symmetry prior is more 
important in perceptual interpretation of 3D shapes than 
binocular disparity. Pizlo and Stevenson [11], and Chan et 
al. [1] showed that human performance in shape constancy 
experiment is better for symmetric, than for asymmetric 
shapes. 

1.3. Symmetry in computer vision 
If two orthographic images of a 3D shape are given, a 

one-parameter family of 3D possible shapes can be 
recovered [3, 4]. Considering the fact that an orthographic 
image of a 3D symmetric shape allows one to produce a 
virtual image of the same 3D shape (see above), it follows 
that a single 2D orthographic image of a 3D symmetric 
shape also leads to a one-parameter family of possible 3D 
symmetric shapes.1 If a 3D shape has two or more mirror 
symmetries, a unique 3D shape can be recovered [17]. If 3D 
data is available (e.g. from range sensors, motion or 
binocular disparity), the symmetry of a 3D shape can be 
evaluated and measured in a number of ways (e.g. [7, 8, 15, 
19]). When only one 2D image is available (the case 
considered in our study), there are algorithms that can use 

 
1 If a perspective, rather than an orthographic image of a symmetric 3D 

shape is given, then a unique 3D interpretation can be computed (e.g. [3, 
12, 9]). 

topology of the 2D contours to determine pairs of 
symmetric points and features in the image, without 
actually recovering the 3D symmetric shape [18, 20]. 

It is trivially true than any 2D image of a 3D symmetric 
shape is consistent with infinitely many asymmetric 3D 
shapes. It is less trivial, but also true, that there are 
asymmetric 3D shapes such that each of their images is 
consistent with infinitely many 3D symmetric shapes. 
Images of such shapes are shown in Figures 1c and d. 
Interestingly, even though 3D symmetric interpretations 
are possible in these two cases, human observers do not 
perceive 3D symmetric shapes. Instead, they perceive 
asymmetric 3D shapes, which agrees with shapes that were 
used to produce these images. Formal psychophysical 
experiments testing this ability, as well as a computational 
model that can produce equally or even better performance, 
are described in this paper. 

 

 
(a)         (b) 

 
(c)         (d) 
Figure 1. Orthographic images of (a) a symmetric polyhedron, (b) 
an asymmetric polyhedron generated by distorting the symmetric 
polyhedron shown in (a) randomly, (c-d) asymmetric polyhedra 
generated by distorting the symmetric polyhedron shown in (a) in 
such a way that the “symmetry line segments” remained parallel 
and faces remained planar. 

2. Psychophysical experiment on 3D 
symmetry detection 

2.1. Stimuli 
Abstract symmetric and asymmetric polyhedra were 

used. Each symmetric shape consisted of a small and large 
box connected to each other. All faces of a symmetric 
polyhedron were planar (Figure 1a). Two types of 
asymmetric polyhedra were generated from symmetric 
ones. The first type (Type-A) was generated by distorting a 
symmetric polyhedron randomly (Figure 1b). The second 
type (Type-B) was generated by distorting a symmetric 
polyhedron in such a way that the symmetry line segments 
of the symmetric polyhedron remained parallel and the 



 

 

faces remained planar (Figure 1c and d).  
Orthographic projection was used to produce 2D images. 

Hidden edges were removed. Each polyhedron was 
randomly oriented in 3D space subject to two constraints: at 
least one vertex of each pair of symmetric vertices, and at 
least six symmetric pairs of vertices had to be visible. These 
constraints allow the recovery of the entire polyhedron 
(both the visible and the hidden parts) by our model (see 
Section 3.1 and Appendix). The stimuli were shown on an 
LCD monitor. The subject viewed the monitor with the 
right eye. 

2.2. Procedure 
The method of signal detection was used. Each session 

consisted of 200 trials: 100 trials with symmetric polyhedra 
and 100 trials with asymmetric polyhedra, presented in a 
random order. There were 8 experimental conditions: two 
types of asymmetric polyhedra (Type-A vs. -B) × four 
levels of distortion for generating asymmetric polyhedra 
(L1 – L4). The levels corresponded to the extent by which 
the vertices have been moved. L1 corresponded to quite 
small distortion, whereas L4 corresponded to quite large 
distortion. The subject ran two sessions for each condition. 
The order of sessions was randomized. 

In each trial, the stimulus was shown for 500 ms. The 
subject responded whether the presented polyhedron was 
symmetric or not. After each trial, a feedback about the 
accuracy of the response was given. The performance of the 
subject was evaluated by the discriminability measure d′ 
used in the signal detection theory. d′ is computed from hit 
rate (symmetric polyhedra judged as symmetric) and 
correct rejection rate (asymmetric polyhedra judged as 
asymmetric) in each session [16]. Higher performance 
corresponds to higher values of d′ (d′=0 - chance 
performance, d′=∞ - perfect performance). In this study, 
perfect performance corresponds to d′ about 5. 

2.3. Results and Discussion 
Results of one subject (the first author) are shown in 

Figure 2 (results of the other subject were very similar). 
The ordinate shows d′. The abscissa shows levels of 
distortion of the asymmetric polyhedra. The two curves 
indicate types of asymmetric polyhedra: black symbols 
Type-A, and gray symbols Type-B. 
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Figure 2. Results of the subject in the psychophysical experiment. 
The ordinate shows d′, and the abscissa shows levels of distortion 
of asymmetric polyhedra. Error bars represent standard errors. 
 

As expected, performance improved with the level of 
distortion for both two types of asymmetric polyhedra. 
Also as expected, performance was better with Type-A 
asymmetric polyhedra. Recall that the Type-A asymmetric 
polyhedra were generated by distorting a symmetric 
polyhedron randomly. Random distortions removed the 
parallelism of symmetry line segments and planarity of 
contours. Parallelism of symmetry line segments and 
planarity of contours were preserved with the Type-B 
asymmetric polyhedra. The fact that performance with 
Type-A distortion was better is not surprising. What is 
surprising, however, is that the subject was able to perform 
above chance level with Type-B distortion. Recall that each 
image of an asymmetric polyhedron of this type is 
consistent with a symmetric interpretation. How then can 
the asymmetry of the 3D shape be detected? If all images in 
a session were consistent with symmetric polyhedra, how 
was the subject able to discriminate between images of 
symmetric vs. asymmetric 3D shapes? Figures 1c and d 
provides an illustration that this is possible. In fact, it is 
difficult to “see” that the images in Figures 1 c and d could 
be produced by 3D symmetric shapes. Clearly, the visual 
system uses a priori constraints that override, or compete 
with symmetry constraint in the process of recovery of 3D 
shapes. The nature of these constraints will be described 
next. 

3. Computational model of detecting 3D 
symmetry 

The model consists of two main stages. In the first, a 
polyhedron is recovered from a 2D image. In the second, 
the asymmetry of the recovered polyhedron is measured 
and compared to a criterion in order to decide whether or 
not the recovered 3D shape is symmetric. Performance of 
the model was evaluated using the same 3D simulated 
shapes and their images that were used in the 
psychophysical experiment. Note that our model does not 
perform image segmentation. Specifically, the model is 
provided with visible contours of a 3D shape, as well as 
with the information which vertices in the 3D shape are 
symmetric and which contours are planar. More precisely, 
the model was given two possibilities for the orientation of 
the symmetry plane. These two possibilities correspond to 
the vertical and horizontal planes of symmetry in the case 
of the objects shown in Figure 1. The model evaluated the 
symmetry of both interpretations and chose the more 
symmetric one. 

Note that the 2D orthographic image is the only input 
data to the model (and to the human visual system). 
However, the 2D image is not the only information used by 
the model (and by the human visual system). The model 



 

 

(and the human visual system) also uses a priori shape 
constraints. The constraints are used because 3D shape 
recovery from a single 2D image is underconstrained. So, 
even though the 2D image is the only input data for the 
discrimination between symmetric and asymmetric 3D 
shapes, the 2D image itself doesn’t have enough 
information to perform this discrimination. Reliable 
discrimination can only be performed after the 3D shape is 
recovered, through the application of a priori constraints. In 
other words, the a priori constraints add information not 
only for the purpose of recovering the 3D shape, but also 
for the purpose of discrimination between two categories of 
3D shapes (symmetric vs. asymmetric).  

The computational details are explained below. 
Specifically, the second stage, in which the asymmetry of 
the recovered 3D shape is measured, is described in the 
next section. This second stage is essential for 
understanding how the model’s performance was compared 
to that of the subject. The first stage, in which an 
approximately symmetric 3D shape is recovered from a 
single 2D image is described in the Appendix.  

3.1. Measure of asymmetry of the recovered 
polyhedron 

Before the asymmetry of a 3D shape is evaluated, the 
shape is recovered. As pointed out above, recovery of a 
unique 3D shape from a single 2D image is 
underconstrained. In order to produce a unique 3D shape, 
one has to restrict the family of possible 3D interpretations, 
by using a priori constraints. Here we use the algorithm 
described by Li & Pizlo [6]. Specifically, given a 2D 
orthographic image of a symmetric 3D shape, the algorithm 
begins by producing a virtual image of this shape (see 
Appendix). Next, the algorithm constructs a one-parameter 
family of 3D symmetric shapes consistent with the given 
2D image. Finally, 3D shape with maximal 3D 
compactness is selected as the recovered shape. 3D 
compactness is defined as V2/S3, where V is the volume and 
S is the surface area of the 3D shape. In the case of opaque 
shapes, planarity of faces themselves [14] or planarity in 
conjunction with symmetry [9] can be used to recover the 
back part of the polyhedron. When the 3D shape is 
asymmetric, this algorithm must be modified. Specifically, 
the 2D image is first corrected so that it is consistent with a 
3D symmetric shape. Then, the 3D shape is recovered as 
described above. Finally, the 3D symmetric shape is 
distorted in 3D, so that it becomes consistent with the given 
2D image (see Appendix). 

 
Figure 3. Recovered polyhedra from images in Figure 1.To give 
the reader a better intuition about the recovered 3D shapes, the 
polyhedra in this Figure are transparent, and three views (front, 
side and top) are shown. Red marks in (c) indicate the line 
segment which represents self-intersection of the object’s surface. 
 

Now, that the 3D shape is recovered, one can evaluate 
how asymmetric it is. This is done by comparing the two 
halves of the 3D shape. If the shape is perfectly symmetric, 
the two halves are identical. If the 3D shape is only 
approximately symmetric, the two halves will only be 
approximately identical. We use the sum of squared 
differences between the corresponding 2D angles, αa and 
αcounterpart(a), of the polyhedron H, as a metric: 

( )∑ −=
a

atcounterparaHap 2
)()( αα ,     (1) 

The greater ap(H) is, the more asymmetric H is. In the 
simulation experiment, a criterion was used, to which 
ap(H) was compared, in order to decide between symmetric 
and asymmetric 3D shapes. 

The measure ap(H) defined in (1) can correctly detect 
asymmetry in the case of Type-A asymmetric 3D polyhedra 
that were used in our experiment (see above). However, it 
will not detect asymmetry in the case of Type-B 
asymmetric polyhedra. The reason is that every image of 
such a polyhedron is actually consistent with a 3D 
symmetric interpretation. As a result, our algorithm will 
recover a symmetric polyhedron. This means that we need 
another measure of 3D symmetry.  

An examination of the 3D symmetric shapes recovered 
from images produced by Type-B asymmetric polyhedra 
shows that the recovered shapes have surfaces with 
self-intersection. An example of such a case is shown in 

(a) 

(b) 

(c) 

(d) 



 

 

Figures 1c and 3c. Self-intersecting surfaces are not “valid” 
in the sense that some vertices and edges that should not be 
visible in the 2D image are actually visible. They should 
not be visible because the surfaces are assumed to be 
opaque. In other words, the recovered symmetric shapes 
with self-intersections are not consistent with the given 
images. It follows that 3D interpretations that are consistent 
with the given 2D image are not symmetric. There are also 
other cases of Type-B asymmetric polyhedra, in which 
self-intersection of surfaces does not occur, but the 3D 
shape is correctly perceived by observers as asymmetric. 
Such a case is shown in Figures 1d and 3d. An examination 
of the recovered 3D shape shows that it tends to be “thin” 
and have very low 3D compactness. This observation 
suggests that the human visual system “prefers” compact 
asymmetric 3D shapes over symmetric non-compact ones. 
It follows that 3D compactness is a more important prior 
than 3D symmetry. Interestingly, compactness can also be 
used to detect 3D recovered shapes that have 
self-intersecting surfaces because such shapes tend to have 
low compactness.2 Indeed, using compactness alone allows 
one to detect most self-intersecting 3D shapes. To test this, 
we generated 800 Type-B asymmetric polyhedra and 
recovered 3D symmetric shapes from their 2D images. 106 
of the recovered 3D shapes had self-intersecting surfaces 
and most of them (101) had very low compactness. 

In the simulations (described below) we tested two 
models of symmetry discrimination. One used 3D 
compactness only (model C), and the second used both 
ap(H) as defined in (Eq 1) and 3D compactness (model 
A+C). Model A+C judges a polyhedron as symmetric only 
when the polyhedron is symmetric according to both ap(H) 
and 3D compactness criteria. 

3.2. Simulation experiment 
The two models of symmetry discrimination (C and 

A+C) were applied to the images that were used in the 
psychophysical experiment. Each model was applied to 

 
2 The self intersection makes an upper bound of compactness smaller, 

as compared to objects without self intersection. Take an object O with a 
self intersection of its surface. Let the self intersection separate the surface 
into two surfaces with surface areas Sa and Sb. Compactness of this object 
is maximized when these two surfaces form two spheres that contact each 
other at the self intersection: 
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where Co is compactness of the object, and ra and rb are radii of spheres 
with surface areas Sa and Sb. Recall that 1/(36π) is the upper bound of 3D 
compactness (the upper bound corresponds to a single sphere). So, self 
intersection of the surface of the object makes an upper bound of its 
compactness smaller. 

images of symmetric and asymmetric shapes for each of the 
eight experimental conditions, and computed asymmetry 
measure for all shapes. This led to two overlapping 
frequency distributions: one representing symmetric and 
the other representing asymmetric shapes (as in a signal 
detection model). When these two distributions overlap, 
perfect discrimination is impossible. By changing the 
criterion for classifying the shape as asymmetric, the 
proportion of hits and false alarms are changed. 
Furthermore, the discriminability d′ is also changed to 
some degree. In the simulation results shown in Figure 4, 
the citeria for compactness and for ap(H) were chosen in 
order to provide the best fit of the model to the subject’s 
data. 

Results of the model superimposed on the results of the 
subject are shown in Figure 4. The ordinate shows d′. The 
abscissa shows levels of distortion for the asymmetric 
polyhedron. 
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Figure 4. Results of the two models in the simulation experiment. 
The ordinate shows d′, and the abscissa shows the level of 
distortion for generating asymmetric polyhedra. Error bars 
represent standard errors. 
 

Consider the discrimination between symmetric and 
Type-B asymmetric polyhedra (Figure 4, right panel). 
Recall that Type-B asymmetric polyhedra were produced 
by distorting symmetric polyhedra in such a way that the 
symmetry line segments remained parallel and the faces 
remained planar (see Figures 1c and d). As a result, there is 
always a 3D symmetric interpretation for any image of this 
type of asymmetric polyhedron. Hence, the asymmetry of 
Type-B asymmetric polyhedra can not be evaluated by 
ap(H), but only by 3D compactness. It can be seen that the 
performance of Model C is quite similar to that of the 
subject. Obviously, Model A+C would have produced the 
same performance as Model C because the criterion ap(H) 
does not contribute anything to the discrimination in this 
case. 

Next, consider the discrimination between symmetric 
and Type-A asymmetric polyhedra (Figure 4, left panel). 
Recall that Type-A asymmetric polyhedra were produced 
by randomly distorting symmetric polyhedra (see Figure 
1b). It can be seen that model A+C produced a good fit to 
the subject’s results. Model C’s performance is 



 

 

systematically lower. This was to be expected. In this 
condition, many asymmetric polyhedra had high 3D 
compactness. Therefore, 3D compactness itself could not 
lead to reliable discrimination between symmetric and 
asymmetric polyhedra. 

From these results, we can conclude that model A+C is a 
plausible model of symmetry discrimination. Its 
performance, as measured by d′ is similar to that of the 
subject across all experimental conditions. Specifically, a 
human observer perceives a 3D shape as symmetric when a 
symmetric interpretation is possible and the recovered 
symmetric shape is compact with non self-intersecting 
surfaces. 

4. Summary and future work 
This paper examined the problem of discrimination 

between 3D symmetric and asymmetric shapes based on a 
single 2D orthographic image of a randomly generated 
polyhedron. We reported a psychophysical experiment and 
formulated a computational model of this ability. To the 
best of our knowledge, this is the first such model. 
Performance of the model was similar to that of the subject 
suggesting that this model provides a possible explanation 
of the underlying perceptual mechanisms. 

The model performs a 3D recovery of a symmetric or 
asymmetric 3D polyhedron. It is an elaboration of previous 
models that could recover only symmetric shapes. After the 
3D shape is recovered, its symmetry is evaluated by 
comparing corresponding angles and evaluating 3D 
compactness. The fact that 3D compactness is a critical 
component of 3D shape recovery and 3D symmetry 
discrimination implies that this constraint is at least as 
important as 3D symmetry in perception of 3D shapes.  

Our future work will address several aspects of the 
model. First, although our current model can detect whether 
the 3D shape is asymmetric, it will not always recover this 
asymmetric shape. This is the case with Type-B 
asymmetric polyhedra. The next step will be formulating a 
model that can explain what the subject actually perceives 
when looking at images like those in Figures 1c and d. Next, 
the model will be elaborated by adding an image 
segmentation stage. In the current version, the object’s 
contours are given to the model, as is the possible position 
of the symmetry plane. In our future work, the model will 
be generalized so that it can detect vertices and edges, 
group contours and detect pairs of symmetric features. 
Finally, this model will be generalized to the case of 
smoothly curved objects, such as animal bodies. 

5. Appendix: A new algorithm for recovering 
a 3D approximately symmetric 
polyhedron from a single 2D orthographic 
image 

Let z=0 be the image plane, the x-axis point to the right 
and y-axis point up. Consider an orthographic image of a 
3D polyhedron in the image plane xy. The polyhedron is 
assumed to be opaque. We begin with the analysis of those 
pairs of symmetric vertices that are both visible. It is 
assumed that the correspondence between 3D symmetric 
points is given. The algorithm consists of seven steps 
(operations). These steps will be described below. 

5.1. Canonical orientation on the image plane. 
First, the 2D image of the polyhedron is rotated in the 

image plane (in clockwise direction) so that the projected 
symmetry line segments become horizontal. There are two 
rotation angles that differ by 180 deg, which can 
accomplish this. The smaller of these two angles is used. 
This rotation is unique when all projected symmetry line 
segments are parallel. When these segments are not parallel 
(as is the case with an image of an asymmetric polyhedron), 
the rotation makes the average orientation of the projected 
symmetry line segments horizontal: 

ii PpR =⋅− )(2D φ ,       (A1) 
(A1) can be written explicitly as follows: 
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where pi=[xi, yi]t and Pi=[Xi, Yi]t are positions of a projected 
vertex i before and after the rotation, and φ is the average 
orientation of the projected symmetry line segments. Let a 
symmetric counterpart of the vertex i be a vertex j (pj=[xj, 
yj]t and Pj=[Xj, Yj]t). 

5.2.  Correction of the 2D image 
When the projected symmetry lines are all parallel in the 

2D image, this step is skipped. When they are not parallel, 
their orientations are changed (corrected) so that they 
become parallel. This way, the corrected image will be 
consistent with a 3D symmetric interpretation. Specifically, 
each projected symmetry line segment is made parallel to 
the x-axis by applying the following transformation: 
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where Pi′=[Xi′, Yi′]t and Pj′=[Xj′, Yj′]t are positions of 
projected vertices i and j after the correction. 

Note that this transformation leads to the smallest change 



 

 

of the two endpoints, in the least sum of squares sense. This 
corrected image is an orthographic image of a perfectly 
symmetric shape. 

5.3. Producing a virtual image 
The method proposed by Vetter and Poggio [17] is 

applied to the corrected image. The virtual image of the 
symmetric 3D shape is generated by reflecting the 
corrected image with respect to the y-axis: 
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where Qi′ and Qj′ are positions of projected vertices i and j 
in the virtual image. This virtual image is an image of the 
same 3D shape after a 3D rigid rotation of the shape around 
the y-axis. Let the 3D coordinates of the symmetric pair of 
vertices i and j of the real (corrected) image be Vi′=[Xi, Yi′, 
Zi]t and Vj′=[Xj, Yi′, Zj]t. Note that x- and y-values of Vi′ and 
Vj′ are identical to those of Pi′ and Pj′ on an orthographic 
image. In the same way, let the 3D coordinates of the 
symmetric pair of vertices i and j of the virtual image be 
Ui′=[−Xi, Yi′, Zi]t and Uj′=[−Xj, Yi′, Zj]t. Then, the vertex that 
corresponds to Vi′ after the 3D rigid rotation can be written 
as follows: 

'''' jiii UΛVRΛ =⋅= and3D      (A4) 
(A4) can be written explicitly as follows:  
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where R3D is a 3×3 rotation matrix, and Λi′ is the 3D vertex 
i after the 3D rigid rotation. 

The 3D rigid rotation has three parameters. Recall, 
however, R3D in Equation (A4) has only one parameter, the 
angle θ of rotation around the y-axis: 
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5.4. Recovering one-parameter family of 
symmetric polyhedra 

From the first row of Equation (A4) we obtain: 
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An equation for Zi can be derived by combining Equation 
(A6) with (A1):  
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Hence, the vertex i of the recovered 3D symmetric shape 
can be written as follows: 
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It can be seen that Vi′ depends on one parameter, the angle 
θ. 

5.5. Undoing the 2D correction in 3D space 
When the projected symmetry lines are all parallel in the 

real 2D image, this step is skipped. When they are not 
parallel, the recovered 3D shape is distorted so that its 
image agrees with the given 2D real image: 

3D∆VV += ''' ii ,        (A9) 
where ∆3D is a 3D distortion and Vi′ is position of vertex i 
after the distortion. Let the 3D coordinate of ∆3D be [∆X, ∆Y, 
∆Z]t. From Equation (A2), ∆3D =[0, Yi −Yi′, ∆Z]t and ∆Z can 
be arbitrary. Obviously, this distortion (∆3D) is minimized 
when ∆Z=0. Hence, the minimally distorted symmetric 
shape which is consistent with the real 2D image can be 
written as follows: 
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Note that the transformation of x and y coordinates in 
Equation (A10) is an inverse transformation of that in 
Equation (A2). 

5.6. Applying planarity constraint to recover 
hidden vertices 

If all vertices are visible, this step is skipped. Symmetric 
pairs whose one vertex is visible and the other is hidden are 
recovered by applying two constraints: planarity constraint 
for the visible vertex and symmetry constraint for the 
hidden counterpart [9]. In order to use a planarity 
constraint, at least three vertices of a face on which the 
visible vertex is located have to be recovered first. Assume 
that the face is planar, and the orientation of the face is 
known. The z-value of the visible vertex is obtained by 
computing an intersection of the face and the projection 
line emanating from the image of this vertex. The hidden 
counterpart is recovered by reflecting the visible vertex 
with respect to the symmetry plane of shape. 



 

 

5.7. Applying the maximum compactness 
constraint 

The maximally compact 3D shape is chosen from the 
one-parameter family, as the recovered shape. 

Interestingly, this algorithm that was formulated for the 
case of 3D symmetric shapes can be applied to 2D shapes, 
as well. Specifically, the steps 1-5 of the algorithm work 
the same way in the case of 3D and 2D points simply 
because they are applied to one pair of symmetric vertices 
at a time. As a result, the algorithm produces a 
one-parameter family of symmetric shapes and the shapes 
are either 2D or 3D depending on whether all midpoints of 
the symmetry line segments are collinear or not. This seems 
to be the first such algorithm. Prior algorithms for 
recovering 3D symmetric shapes needed either four [17] or 
three [6] non-coplanar symmetric pairs of vertices. It 
follows that these prior algorithms cannot recover planar 
symmetric figures. After a one-parameter family of 2D 
symmetric shapes is computed, the human visual system 
chooses a symmetric shape that can be produced from the 
given image by shearing the 2D shape along the projected 
symmetry line segments [13].  
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